Re-Engineering of a Stainless Steel Fire Boom for Use in Conjunction with Conventional Fire Booms

I. Buist, S. Potter, J. McCourt
SL Ross Environmental Research
Ottawa, ON, Canada
Ian@slross.com

P. Lane, P. Newsom, L. Hillebrand
Applied Fabric Technologies
Orchard Park, NY, USA

S. Buffington
US DOI MMS
Herndon, VA, USA

Abstract

Many existing refractory fabric fire booms will deteriorate quickly in use and may require frequent replacement in a large-scale burn operation. These problems can be minimized, or even eliminated, by using a highly durable and fire-resistant material in the pocket of the boom where the highest heat and stress loads exist.

In this project an existing, large stainless steel boom was re-engineered to reduce its size, weight and cost. The large boom was designed, constructed and tested successfully in the early 1980s; however, because of the rigorous criteria used for the original design, it is expensive, heavy, and cumbersome to deploy.

The project was completed in nine phases: (i) the existing boom was redesigned to reduce its cost, size, weight, and handling problems, and to make it compatible with existing boom systems; (ii) a prototype section of the re-engineered boom was constructed for testing; (iii) the boom was tested in Lake Erie to evaluate its towing and sea-keeping characteristics; (iv) the prototype was tested at Ohmsett to quantify its oil-containment capability; (v) three hours of burn tests in waves were conducted in a diesel fire at the US Coast Guard Fire and Safety Test Detachment in Mobile, AL; (vi) post-burn tow tests were performed at Ohmsett to confirm the containment capability of the boom after the diesel-fire exposure; (vii) three hours of burn tests in waves were carried out in enhanced propane flames at Ohmsett; and, (viii) destructive testing was used to estimate the operational life of the flexible connector sections, and the tensile strength of several key load-bearing components. Finally, the design of the boom was refined and final detailed engineering drawings and a report were produced.

The boom passed all the tests. The final design is presented in the paper. The boom may be purchased commercially from Applied Fabrics Technologies, Inc.